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4401. (a) The suggested equations, when raised to the
fourth, are x4 = cos2 t and y4 = sin2 t. Adding
these, x4 + y4 = cos2 t + sin2 t ≡ 1.

(b) If the inequality is well defined, cos t ∈ [0, 1].
Squaring a number in [0, 1] leaves it unchanged
or decreases it. Hence,

√
cos t ≥ cos t always

holds, if it is well defined.
(c) The inequality

√
sin t ≥ sin t also holds, if the

square root is well defined. So, in the positive
quadrant, the curve x4 + y4 = 1 is everywhere
on or outside the unit circle, whose parametric
equations are x = cos t, y = sin t. The curve is

4402. (a) Consider the following binomial expansion, in
which a ̸= 0:

a
(
x + b

3a

)3 ≡ ax3 + bx2

+ a linear function of x.

This matches the first two terms of the cubic.
It must then be possible to write the linear
function of x that remains as a linear function
of

(
x + b

3a

)
. So, with α = b

3a , we have the
required form.

(b) The curve C : y = px3 + qx has rotational
symmetry around O, because it consists solely
of odd powers of x. The curve

D : y = p(x + α)3 + q(x + α) + r

is then a translation of C by vector −αi + rj.
So, has rotational symmetry around the point
(−α, r). Every cubic, therefore, has rotational
symmetry.

4403. The points of inflection of a normal distribution
are at x = µ ± σ. In this case, for X ∼ N(0, 1),
these are at x = ±1.

(
1, ϕ(1)

)(
− 1, ϕ(−1)

)

x

y

Using a calculator, the total shaded area is

P(−1 < X < 1) = 0.68268...

The hatched rectangle has area 2ϕ(1), which is
0.48394... So, the area enclosed is the difference
between the two, which is 0.199 (3sf).

4404. The integrand is
2x2

x2 − 16 ≡ 2(x2 − 16) + 32
x2 − 16 ≡ 2 + 16

x2 − 16 .

For partial fractions,
32

(x + 4)(x − 4) ≡ A

x + 4 + B

x − 4
=⇒ 32 ≡ A(x − 4) + B(x + 4).

Substituting x = ±4, we get A = −4 and B = 4.
So, the integral is∫ 8

5
2 − 4

x + 4 + 4
x − 4 dx

=
[

2x + 4 ln
∣∣∣∣x − 4
x + 4

∣∣∣∣
]8

5

=
(
16 + 4 ln 4

12
)

−
(
10 + 4 ln 1

9
)

= 6 + 4 ln 3, as required.

4405. (a) P has no points of inflection, so f ′′(x) does not
change sign. Since f is a polynomial, f ′′(x)
is always non-negative or non-positive. Wlog,
we choose f ′′(x) ≥ 0 for all x. The proof is the
same, mutatis mutandis, if f ′′(x) ≤ 0 for all x.

(b) Differentiating the definition of h,

h(x) = f(x) − mx − c

=⇒ h′(x) = f ′(x) − m

=⇒ h′′(x) = f ′′(x).

And f ′′(x) ≥ 0 for all x, so h′′(x) ≥ 0 for all x.
(c) h(x) = 0 holds at intersections of y = f(x)

and y = mx + c. So, Q has at least three x

intercepts. The first three are at x = a, b, c.
(d) Q has non-negative curvature, so any chord lies

at or above Q. The x interval [a, b], along the
x axis, is a chord of Q, so h(x) ≤ 0 on [a, b].
And there are no x intercepts of Q between a

and b (a, b, c are the first three x intercepts).
So, h(x) < 0 on (a, b).
The same argument applies for [b, c].
Hence, h(x) < 0 on (a, b) ∪ (b, c).

(e) We know that h(b) = 0. But this, combined
with the results of part (d), means that (b, 0)
is a local maximum. Hence, h′′(b) < 0. This is
a contradiction.
So, no three points on P are collinear. qed.

4406. This is not true. Consider a possibility space of
eight equally likely outcomes {1, 2, 3, 4, 5, 6, 7, 8}.
Define events X, Y, Z as follows:

X = {1, 2, 3, 4}, Y = {2, 3, 4, 5}, Z = {3, 4, 5, 6}.

Each has probability 1
2 . X and Y are dependent,

as each increases the probability of the other to 3
4 .

Likewise Y and Z. But X and Z are independent:

P(X | Z) = P(Z | X) = 1
2 .
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4407. Consider the case of limiting friction, in which the
objects are in equilibrium, with friction at Fmax.
The force diagrams are

θ R1

R2

mg

R3

R3

mg

R4

µR4

θ

Taking moments around the hinge, R3 = mg cos θ.

Resolving vertically for the block,

R4 − R3 cos θ − mg = 0
=⇒ R4 = mg cos2 θ + mg

≡ mg(cos2 θ + 1)
≡ 1

2 mg(cos 2θ + 3).

Resolving horizontally for the block,

R3 sin θ − µR4 = 0
=⇒ mg sin θ cos θ − µ 1

2 mg(cos 2θ + 3)

=⇒ µ = 2 sin θ cos θ

cos 2θ + 3

≡ sin 2θ

cos 2θ + 3 .

Therefore, for equilibrium,

µ ≥ sin 2θ

cos 2θ + 3 .

4408. The first equation is a quadratic in xy
3
2 :(

xy
3
2 + 1

)(
xy

3
2 − 2

)
= 0

=⇒ xy
3
2 = −1, 2.

Consider each of these as a separate graph. The
relationships are akin to inverse proportion, with
an additional requirement due to the presence of
y

1
2 that y ≥ 0.

x

y1

xy
3
2 = −1

2

x

y

xy
3
2 = 2

We know that 3y = 2x + 5 is tangent to the curve.
Since it has +ve gradient, the point of tangency is
in the second quadrant, with 1 . It is at (−1, 1).
Putting the graphs back together, it follows that
there must be one more point of intersection, with
2 , in the positive quadrant:

x

(−1, 1)

4409. The scenario, with a successful outcome shown, is

Choose the first vertex without loss of generality.
This fixes the set of positions for the remaining
three vertices: the full set must have rotational
symmetry order 4. So, the probability that the
subsequent vertices are all selected from this set of
three is

p = 1 × 3
15 × 2

14 × 1
13 = 1

455 .

4410. Rearranging the second equation, tan t = 2
P and

cot t = P
2 . Using double angles on the first,

2P sin t cos t = 1
=⇒ 4P 2 sin2 t cos2 t = 1
=⇒ 4P 2 = cosec2 t sec2 t

≡ (1 + cot2 t)(1 + tan2 t)

=
(

1 + P
2

2
) (

1 + 2
P

2
)

≡ (P 2 + 4)2

4P 2

=⇒ 16P 4 = (P 2 + 2)2

=⇒ P = ± 2√
3 .

The solution is

P = 2√
3 , t = π

3 , 4π
3 ,

P = − 2√
3 , t = 2π

3 , 5π
3 .

4411. The vertices (k, k) and
(
k2, k2)

are both on y = x.
So, to find the area of the triangle, we need only
find the “height” of the triangle, dashed below,
which is the distance of (0, 1) from y = x.

x

y

(0, 1)
(k, k)

(
k2, k2)

Using A△ = 1
2 bh,

A△ = 1
2 ·

√
2(k2 − k) · 1

2

√
2

= 1
2 k(k − 1), as required.
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4412. Consider the quantity

S = x + y + z.

Initially, this is zero. A step in any direction adds
or subtracts 1 from one of the coordinates (x, y, z),
thereby adding or subtracting 1 from S. So, after
one step S is odd, after two steps S is even, and
so on. After six steps, S is even. But (1, 1, 1) gives
S = 3. Hence, the probability of ending up at
(1, 1, 1) after six steps is zero.

4413. (a) Integrating the velocity,

s(δt) =
∫ δt

0

√
2t + 9 dt

≡
[

1
3 (2t + 9) 3

2

]δt

0

≡ 1
3 (2δt + 9) 3

2 − 9.

(b) Using the binomial expansion,

1
3 (2δt + 9) 3

2 − 9

≡ 9
(
1 + 2

9 δt
) 3

2 − 9
≈ 9

(
1 + 1

3 δt + 1
54 δt2)

− 9
≡ 3δt + 1

6 δt2.

(c) The particle begins with velocity u = 3. With
constant acceleration a, we use s = ut + 1

2 at2.
The displacement is

s(δt) = 3δt + 1
2 aδt2.

With a = 1
3 , this is the same as the previous

quadratic approximation, as required.

4414. Rotation by 90° clockwise around the origin maps
(p, q) to (q, −p). This is the same as a reflection in
y = 0, mapping (p, q) to (−p, q), then a reflection
in y = x, mapping (−p, q) to (q, −p). We apply
these in turn.
Firstly, reflecting in y = 0,

g(x) = h(y) 7−→ g(−x) = h(y).

Then, reflecting in y = x,

g(−x) = h(y) 7−→ g(−y) = h(x).

So, the required equation is g(−y) = h(x).

Nota Bene

The second transformation, switching x and y,
should be considered carefully. It is not the input
−x of the function g(∗) which is switched with the
input y of the function h(∗). Rather, it is the input
x of the function g(−∗) which is switched with the
input of the function h(∗).

4415. We place the apex of the cone at the origin, and
the base at x = h. In cross-section, the cone is

r

h

(h, r)

x

y

The equation of the upper slanted edge is y = r
h x,

where y represents the radius of a thin disc. So,
the volume of the cone is given by integrating πy2

across the height of the cone:

Vcone =
∫ h

0
π

(rx

h

)2
dx

≡

[
π

r2x3

3h2

]h

0

≡ π
r2h3

3h2

≡ 1
3 πr2h, as required.

4416. The boundary equations are y = ± sin x. Points in
the solution set have y values closer to zero than
points on these sinusoids. This gives

x

y

4417. (a) Writing over base 64,

log64(x + 1)6 + log64 x3 + log64(x + 1)2 = 0.

We combine the logs and exponentiate:

log64 x3(x + 1)8 = 0
=⇒ x3(x + 1)8 = 1
=⇒ x3(x + 1)8 − 1 = 0.

(b) At x = 0, the lhs has value −1; at x = 1, it has
value 255. There are no discontinuities, so, due
to the sign change, there is a root x ∈ (0, 1).
The lhs of the original equation is undefined
at x = 0, but tends to −∞ as x → 0+. At
x = 1, the lhs has value 4

3 . Again, there is a
sign change, confirming that E has a root in
the domain (0, 1).
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4418. Assuming limiting friction, friction is at maximum
and neither block is moving. The tensions are
therefore m1g and m2g, where m1g > m2g. The
total downwards force on the pulley is the sum of
the tensions, i.e. R = m1g + m2g. We are told
that the difference between the tensions is equal
to µR. This gives

m1g − m2g = µ(m1g + m2g)
=⇒ m1 − m2 = µm1 + µm2

=⇒ m1(1 − µ) = m2(1 + µ)

=⇒ m1

m2
= 1 + µ

1 − µ
, as required.

4419. Using the identity cos x ≡ sin
(

π
2 − x

)
,

f(x) = (1 − k) sin x + k cos x.

When expressed in harmonic form, the amplitude
of such a sum of sinusoids is the Pythagorean sum
of the individual amplitudes. So,

A2 = (1 − k)2 + k2

≡ 2k2 − 2k + 1.

Taking the positive root by definition of A,

A =
√

2k2 − 2k + 1, as required.

4420. (a) Differentiating implicitly,

2xy + x2 dy
dx + 2 + dy

dx = 0.

Setting dy
dx = 0 gives 2xy +2 = 0. Substituting

into the original equation,

x2 · − 1
x + 2x − 1

x = 0
=⇒ x = ±1.

This gives sps at (±1, ∓1), as required.
(b) Rearranging to make y the subject,

y = − x

1 + x2 .

Since the denominator is a polynomial of
greater degree than the numerator, y → 0 as
x → ±∞. So, the x axis is an asymptote.

(c) The curve passes through the origin and has
no other axis intercepts. It has odd symmetry.
Putting these facts together with the answers
from parts (a) and (b), the graph is

x

y

(1, −1)

(−1, 1)

4421. The scenario, with the ground as the x axis and
the wall as the y axis, is as follows. Assuming that
the foot of the ladder is at the origin at time t = 0,
the x coordinate of A is given by x = 0.3t.

x

y

0.3t

20

Pythagoras gives the y coordinate of B as

y =
√

202 − (0.3t)2

≡
√

400 − 0.09t2.

Differentiating with respect to time,
dy

dt
= 1

2
(
400 − 0.09t2)− 1

2 (−0.18t).

When B is 12 feet off the ground, the x coordinate
of A is 16 feet, which gives t = 160/3. This gives

dy

dt

∣∣∣∣
t=160/3

= −0.4.

So, at this instant, end B is sliding down the wall
at 0.4 feet per second, as required.

4422. In partial fractions, the integrand is
1

16t − t3 ≡ 1
16t

− 1
32(t + 4) − 1

32(t − 4) .

Hence, the integral is∫ 2

1

1
16t

− 1
32(t + 4) − 1

32(t − 4) dt

=
[

1
16 ln |t| − 1

32 ln |t + 4| − 1
32 ln |t − 4|

]2

1

=
( 1

16 ln 2 − 1
32 ln 6 − 1

32 ln 2
)

−
( 1

16 ln 1 − 1
32 ln 5 − 1

32 ln 3
)

= 1
32 (ln 2 − ln 6 + ln 5 + ln 3)

= 1
32 ln 5.

4423. (a) Substituting into the lhs,(
2y −

√
3x

)2

≡
(
2
√

3 sin t + 2 cos t − 2
√

3 sin t)2

≡ 4 cos2 t

≡ 4 − 4 sin2 t

= 4 − x2, as required.

(b) The x coordinate varies sinusoidally, range
[−2, 2]. Hence, the lines x = ±2 are tangent
to the curve.
By considering harmonic form, y also varies
sinusoidally with amplitude 2, as seen in the
Pythagorean sum of

√
3 and 1. So, the lines

y = ±2 are also tangent to the curve.
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4424. Throughout, we can ignore the factor 1/
√

2π, which
is a scale factor in the z direction. It doesn’t affect
behaviour. Let φ(z) denote the unscaled version.

(a) Differentiating by the chain rule,

φ(z) = e− z2
2

=⇒ φ′(z) = −ze− z2
2 .

This has a factor of z, so φ(z) is stationary at
z = 0.

(b) By the product rule, the second derivative is

φ′′(z) = −e− z2
2 + z2e− z2

2

≡ (z2 − 1)e− z2
2 .

This has factors of (z∓1), so is zero at z = ±1.
(c) The second derivative is zero at z = ±1. Its

exponential factor is always positive. Since
(z ∓ 1) are single factors, z = ±1 are single
roots. Hence, there are sign changes in φ′′(z)
at z = ±1. So, these are points of inflection.

Nota Bene

This also proves, via translations/stretches,
the more general result that the probability
density function of X ∼ N

(
µ, σ2)

has points
of inflection at µ ± σ.

4425. Completing the square, the first circle is

(x + 3)2 + (y − 4)2 = 25.

It has centre (−3, 4) and radius 5. The second is

(x − 3)2 + (y + 4)2 = 25 + 200
k2 + 1 .

It has centre (3, −4). Its radius depends on

k 7→ 25 + 200
k2 + 1 .

The range is (25, 225], so the radius can take any
value in (5, 15]. The boundary cases are as follows,
with the circle of radius 5 dotted and the circle of
radius 15 dashed. Both are tangent to the first
circle:

x

y

C1

C2

The second circle is centred on C2. Its radius is
bounded by the circles shown above. Hence, it
must intersect the first circle at least once.

4426. There are 63 = 216 outcomes in the possibility
space. Of these, the successful triples, classified
by the value of X, are

X 1 2 3
(1, 1, 2) (2, 2, 4) (3, 3, 6)
(1, 2, 3) (2, 3, 5)
(1, 3, 4) (2, 4, 6)
(1, 4, 5)
(1, 5, 6)

Each event of type (a, a, b) has three outcomes;
each event of type (a, b, c) has six outcomes. So,
there are 3 × 3 + 6 × 6 = 45 successful outcomes.
The probability, therefore, is 45

216 = 5
24 .

4427. Let x = tan θ. So, dx = sec2 θ dθ. The new limits
are θ = 0 and θ = π

4 . Enacting the substitution,∫ 1

0

1
4x2 + 4 dx

=
∫ π

4

0

1
4(tan2 θ + 1)

sec2 θ dθ

=
∫ π

4

0

1
4 sec2 θ

sec2 θ dθ

=
∫ π

4

0

1
4 dθ

= π
16 , as required.

4428. (a) Consider the bottom two bottles:

The radius is 5 cm, so the width of the bin is
5 + 5

√
2 + 5 = 10 + 5

√
2 cm.

(b) Since all contacts are smooth, the only force
supporting bottles Bk+1, ..., Bn is the reaction
force applied by bottle Bk. The weight of those
n − k bottles is 10(n − k). So, the vertical
component of the reaction must be 10(n − k).
This gives the magnitude of reaction force as
10

√
2(n − k) N.

4429. Rearranging, the given equation is y2 = 1/x − x2.

We consider instead the equation y = 1
x − x2. We

name these as follows:

C : y2 = 1/x − x2,

D : y = 1
x − x2.

D is the sum of a parabola and reciprocal graph.
Its x intercept is at x = 1.
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x

y

C only has points if D has y ≥ 0. So, there are no
points on C outside of x ∈ (0, 1]. Over the domain
x ∈ (0, 1), C is symmetrical in the x axis. So, C is

x

y

1

4430. The first equation is a cubic in (a + 2b):

(a + 2b)2(
1 − (a + 2b)

)
= 0

=⇒ a + 2b = 0 or a + 2b = 1.

Solving each of these with 2a + 5b = 1 gives (a, b)
solution points (−2, 1) and (3, −1).

4431. (a) Setting y = 0, the equation is

2(10x − 1)2 + 8(5x + 2)2 = 25
=⇒ 400x2 + 120x + 9 = 0
=⇒ (20x + 3)2 = 0.

There is a double factor, so the line y = 0 is
tangent to the curve at x = −3/20.

(b) Setting y = 0.4,

2(10x + 1)2 + 8(5x − 2)2 = 25
=⇒ 400x2 − 120x + 9 = 0
=⇒ (20x − 3)2 = 0.

This is also a double factor, so the line y = 0.4
is tangent to the curve at x = 3/20. Since the
sculpture is elliptical, this must be a local and
global maximum: the sculpture stands 40 cm
above the plinth.

(c) Sketching the above facts, the sculpture is

40 cm 0.2

x

y

4432. This is true. It makes no difference whether,
1 as in |x2 − x|, one final output is rendered

positive by a single mod function or,
2 as in |x| × |x − 1|, two individual outputs are

rendered positive by their own mod functions.
The results are equivalent, so the equations must
have the same solution set.

4433. Since the curve y = f(x) has rotational symmetry
around (a, b), the regions shaded below are images
of one another.

2b

2aa

b

a x

y

Therefore, the area of the region between y = f(x)
and the x axis, over the domain [0, 2a], is half the
area of the 2a × 2b rectangle shown:∫ 2a

0
f(x) dx = 1

2 (2a × 2b)

≡ 2ab, as required.

4434. Call the integral I. We integrate by parts twice.
Let u = sin x and v′ = sin 4x, so that u′ = cos x

and v = − 1
4 cos 4x. The parts formula gives

I = − 1
4 sin x cos 4x + 1

4

∫
cos x cos 4x.

And again. Let u = cos x and v′ = cos 4x, so that
u′ = − sin x and v = 1

4 sin 4x. This yields

I = − 1
4 sin x cos 4x + 1

16 cos x sin 4x

+ 1
16

∫
sin x sin 4x dx.

The last term with the integral is 1
16 I (up to a

constant of integration). So, we can rearrange:
15
16 I = 1

16 cos x sin 4x − 1
4 sin x cos 4x + c

∴ I = 1
15 cos x sin 4x − 4

15 sin x cos 4x + d.

4435. We exponentiate each side of the proposed log law
over base a. The lhs gives

aloga xn

≡ xn.

Using (ap)q = apq, the rhs gives

an loga x ≡ (aloga x)n ≡ xn.

The lhs and rhs are therefore equal. qed.
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4436. (a) X1 + X2 ∼ B(2n, p).

(b) There are many possible arguments here, any
of which will suffice. One argument is: the
values modelled by a binomial distribution are
non-negative integers. But X1 − X2 produces
negative integers, if e.g. X1 = 0 and X2 = 1.
Hence, X1 − X2 cannot be binomial.

4437. Using ± compound-angle formulae,

tan
(

π
3 ± x

)
≡

tan π
3 ± tan x

1 ∓ tan π
3 tan x

≡
√

3 ± tan x

1 ∓
√

3 tan x
.

So, the rhs of the proposed identity is

tan x ×
√

3 + tan x

1 −
√

3 tan x
×

√
3 − tan x

1 +
√

3 tan x

≡ tan x(3 − tan2 x)
1 − 3 tan2 x

≡ 3 tan x − tan3 x

1 − 3 tan2 x
.

The lhs of the proposed identity is

tan 3x ≡ tan(2x + x)

≡ tan 2x + tan x

1 − tan 2x tan x

≡
2 tan x

1−tan2 x + tan x

1 − 2 tan x
1−tan2 x tan x

≡ 2 tan x + tan x(1 − tan2 x)
1 − tan2 x − 2 tan2 x

≡ 3 tan x − tan3 x

1 − 3 tan2 x
.

The lhs and rhs are equivalent, as required.

4438. The position, velocity and acceleration are

g(t) = 1
2 f ′′(a)(t − a)2 + f ′(a)(t − a) + f(a)

=⇒ g′(t) = f ′′(a)(t − a) + f ′(a)
=⇒ g′′(t) = f ′′(a).

Substituting t = a into these, each factor of (t−a)
is zero, which gives

g(a) = 0 + 0 + f(a) = f(a),
g′(a) = 0 + f ′(a) = f ′(a),
g′′(a) = f ′′(a).

Hence, the positions, velocities and accelerations
generated by the two models match at t = a.

Nota Bene

These are the first three terms of the Taylor series
for x = f(t) at t = a. The generalised binomial
expansion and the small-angle approximations are
also examples of such series. All are polynomial
approximations to non-polynomial functions.

4439. Assuming that θ is a small angle in radians, we
can use both a small-angle approximation and the
generalised binomial expansion.(

1 − sin θ
)−1

≈
(
1 − θ

)−1

= 1 + (−1)(−θ) + (−1)(−2)
2! (−θ)2 + ...

≈ 1 + θ + θ2.

4440. (a) The asymptotes are x = ±1.
(b) Integrating by inspection,∫

x√
1 − x2

dx

= − 1
2

∫
−2x√
1 − x2

dx

= −
√

1 − x2 + c.

(c) Setting up a limit, the area in question is

A = lim
p→1

∫ p

0

x√
1 − x2

dx

= lim
p→1

[
−

√
1 − x2

]p

0

= lim
p→1

(
−

√
1 − p2 − (−1)

)
= lim

p→1
1 −

√
1 − p2

= 1.

So, despite having infinite extent, the region
in question has finite area.

4441. Assume, for a contradiction, that the sequence is
a gp. Equating two ratios,

a + b

b
= b

a

=⇒ a2 + ab = b2.

Equating another two ratios,
2a + b

a + b
= b

a

=⇒ 2a2 + ab = b2 + ab

=⇒ 2a2 = b2

=⇒ ±
√

2a = b.

Substituting this into the first equation,

a2 ±
√

2a2 = 2a2

=⇒ a = 0.

Hence, a = b = 0. But this contradicts the fact
that the sequence is increasing. So, the sequence
cannot be a gp.
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4442. (a) The functions are f(x) = (x − a)(x − b) and
g(x) = (x − b)(x − c). So, the given equation is

(x − a)(x − b)2(x − c) = 0.

This has three distinct real roots.
(b) Taking out a common factor of (x − 2a),

(x − a)(x − b) + (x − b)(x − c) = 0
=⇒ (x − b)(2x − a − c) = 0.

This has roots x1 = b and x2 = a+c
2 . These

cannot be equal, as x2 is the arithmetic mean
of a and c, which, since 0 < a < c, is greater
than the geometric mean b, according to the
am-gm inequality. Hence, the equation has
two distinct real roots.

4443. The variables x and y only appear as x2 and y2.
Hence, both curves have the x axis and the y axis
as lines of symmetry. So, we need only consider
the positive quadrant x, y ≥ 0.
The first equation is y2 = 6−x2. Substituting this
into the second,

x2(6 − x2 − x2) = 4
=⇒ x4 − 3x2 + 2 = 0
=⇒ (x2 − 2)(x2 − 1) = 0.

In the positive quadrant, this gives intersections
at (1,

√
5) and (

√
2, 2). Symmetry dictates that

copies of these intersections appear in each of the
four quadrants, giving eight points of intersection
overall, as required.

4444. (a) The parametric integration formula is

I =
∫ x2

x1

y dx =
∫ t2

t1

y
dx

dt
dt.

Substituting y and dx
dt = 2 − 2t,

I =
∫ 2

0

1
2 (e 1

2 t − 1)(2 − 2t) dt

=
∫ 2

0
(e 1

2 t − 1)(1 − t) dt, as required.

(b) At t = 0, the coordinates are (0, 0); at t = 2,
they are (0, e/2 − 1). The point at which the
gradient is parallel to y is t = 1. For t ∈ [0, 1),
dx
dt > 0, so the integral calculates positive area;
for t ∈ (1, 2], dx

dt < 0, so the integral calculates
negative area.

t = 0

t = 1

t = 2

x

y

But, as can be seen, the negative area (total
shaded) is greater than the positive (darker
shaded), since y is increasing for all t ∈ [0, 2].

(c) We integrate by parts. Let u = 1 − t and
v′ = e

1
2 t −1, so that u′ = −1 and v = 2e

1
2 t − t.

The parts formula gives

I =
[
(2e

1
2 t − t)(1 − t)

]2

0
+

∫ 2

0
2e

1
2 t − t dt

=
[
(2e

1
2 t − t)(1 − t) + 4e

1
2 t − 1

2 t2
]2

0

= 2e − 6.

This is negative, as expected. So, the area of
the shaded region is 6 − 2e.

4445. Working with a tetrahedron of side length 1, the
base has perpendicular height

√
3/2, so the centre

of the base is
√

3/3 away from its vertices. Forming
a vertical right-angled triangle, the height is

√
6/3.

Scaling up by l and equating to 2,
√

6
3 l = 2

=⇒ l =
√

6.

4446. Squaring the equation of the curve,
√

x + y +
√

x − y = 1

=⇒ x + y + 2
√

x2 − y2 + x − y = 1

=⇒ 2
√

x2 − y2 = 1 − 2x

=⇒ 4x2 − 4y2 = 1 − 4x + 4x2

=⇒ x = 1
4 + y2.

The region in question is

x

y
(1, 1)

(1, −1)

Integrating with respect to y,

A =
∫ 1

2

− 1
2

1
4 + y2 dy − 1

4

=
[

1
4 y + 1

3 y3
] 1

2

− 1
2

− 1
4

= 2
( 1

8 + 1
24

)
− 1

4

= 1
12 , as required.
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4447. The factorisation is

3x3 − 2x2y2 + 3xy − 2y3 ≡ (x2 + y)(3x − 2y2).

Written as a division, this is

3x3 − 2x2y2 + 3xy − 2y3

x2 + y
≡ 3x − 2y2.

4448. Putting everything on the lhs,

f(x)2 + g(x)2 = 2 f(x) g(x)
⇐⇒ f(x)2 − 2 f(x) g(x) + g(x)2 = 0

⇐⇒
(

f(x) − g(x)
)2 = 0

⇐⇒ f(x) − g(x) = 0
⇐⇒ f(x) = g(x).

Hence, A is the solution set of both equations.

Nota Bene

We need implication in both directions ⇐⇒ to
show that the solution sets are the same. If, in the
algebra above, we used only forwards implication
=⇒ , then we would only have proved that A is a
subset of the solution set of the second equation.

4449. The derivative is 1 − 1/x2. So, at a generic point
(p, p + 1/p), the gradient is 1 − 1/p2. Hence, the
equation of the tangent is

y − p − 1
p =

(
1 − 1

p2

)
(x − p).

Substituting y = x + 1
x ,

x + 1
x − p − 1

p =
(
1 − 1

p2

)
(x − p)

=⇒ x + 1
x − p − 1

p = x − p − x
p2 + 1

p

=⇒ x
p2 − 2

p + 1
x = 0

=⇒ x2 − 2xp + p2 = 0
=⇒ (x − p)2 = 0.

So, there is a point of tangency at x = p, which
we already knew, and no others. Therefore, the
tangent does not re-intersect the curve.

Alternative Method

Graphically, this fact can be seen from a sketch of
the curve y = x + 1

x . The graph has a vertical
asymptote at x = 0 and an oblique asymptote at
y = x.

x

y

Without loss of generality, assume the tangent is
drawn to a point in the positive quadrant.

• The tangent cannot re-intersect the curve in
the positive quadrant, since the curvature is
positive for x ∈ (0, ∞),

• The tangent cannot re-intersect the curve in
the negative quadrant, since no such tangent
passes into the region defined by y < x < 0.

So, no tangent re-intersects the curve.

4450. For k variables to change, the number available for
change must be in {k, k+1, ..., n}. We express this
as integer values of r from r = k to r = n.
The probability that r variables are available for
change is 1

n+1 , as there are n + 1 elements of the
set {0, 1, ..., n}.
Once r is chosen, the distribution of the number of
variables that do change is Y ∼ B(r, 1/2). So, the
probability that exactly k variables change, given
r available to change, is

P(Y = k) = rCk
1
2

r−k 1
2

k =
rCk

2r
.

So, the probability that r variables are available
and exactly k of them change is

1
n + 1 ×

rCk

2r
.

Adding this up over all values of r, starting with
r = k and finishing with r = n,

p =
n∑

r=k

1
n + 1 ×

rCk

2r

≡ 1
n + 1

n∑
r=k

rCk

2r
, as required.

4451. Heron’s formula gives

A2 = s(s − a)2(s − b).

We know that 2s = 2a+b, so b = 2s−2a. Subbing
this in,

A2 = s(s − a)2(
s − (2s − 2a)

)
≡ (s − a)2(2as − s2).

Differentiating with respect to a,

d

da
(A2) = −2(s − a)(2as − s2) + 2s(s − a)2

≡ 2s(s − a)(2s − 3a).

Setting this to zero, the area is stationary at a = s

and a = 2
3 s. We reject a = s, as it gives b = 0.

So, the area is maximised at a = 2
3 s, which gives

b = 2
3 s. This is an equilateral triangle.
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4452. This is almost correct. However, the value k = 0
is a counterexample. X̄ is continuous, so

P
(
|X̄ − µ| > 0

)
= 1.

Letting n tend to infinity doesn’t change the value
1, which means that k = 0 disproves the result.
However, the result is true for any constant k ̸= 0.

4453. The angle of rotation is 45°, so the dashed line in
the diagram is angled at 22.5° away from the y

axis. Its equation is therefore

y = x tan 67.5°
≡

(
1 +

√
2
)
x.

Solving this simultaneously with y = x2, the point
of intersection is(

1 +
√

2, 3 + 2
√

2
)
.

So, the area in question is

A = 2
∫ 1+

√
2

0

(
1 +

√
2
)
x − x2 dx

= 2
[

1
2
(
1 +

√
2
)
x2 − 1

3 x3
]1+

√
2

0

= 1
3
(
1 +

√
2
)3

= 1
3
(
7 + 5

√
2
)
, as required.

4454. In the positive quadrant, the locus is x + y = 1,
which is a straight line segment between (0, 1) and
(1, 0). The same appears symmetrically in each
quadrant. So, the locus is a square:

x

y

Its side length is
√

2, so its area is 2 square units.

4455. The first four terms of the proposed Cartesian
equation may be factorised, giving the lhs as

(x + y)3 + 18x − 9y.

Substituting the parametric equations, this is(
t − t3 + 2t + t3)3 + 18

(
t − t3)

− 9
(
2t + t3)

≡ (3t)3 + 18t − 18t3 − 18t − 9t3

≡ 27t3 − 18t3 − 9t3

≡ 0, as required.

4456. Differentiating the trial solution,
dy

dx
= kxk−1

=⇒ d2y

dx2 = k(k − 1)xk−2.

Substituting these into the de,

x2k(k − 1)xk−2 + axkxk−1 + bxk = 0
=⇒ k(k − 1)xk + akxk + bxk = 0
=⇒

(
k(k − 1) + ak + b

)
xk = 0.

This needs to hold for all x. So,

k(k − 1) + ak + b = 0
=⇒ k2 + (a − 1)k + b = 0, as required.

4457. Writing in partial fractions,

x3 − 7x2 + 14x − 7
x2 − 7x + 12 ≡ x + 1

x − 3 + 1
x − 4 .

Next, we expand binomially. Since x is small, we
can neglect terms in x2 or higher:

1
x − 3 ≈ − 1

3 − 1
9 x,

1
x − 4 ≈ − 1

4 − 1
16 x.

This gives
x3 − 7x2 + 14x − 7

x2 − 7x + 12
≈ x − 1

3 − 1
9 x − 1

4 − 1
16 x

≡ 119x − 84
144 , as required.

4458. Let u = 1+e2x, so that du = 2e2x dx. This appears
directly if we factorise the numerator:∫ 2e4x

1 + e2x
dx

=
∫

e2x

1 + e2x
2e2x dx

Enacting the substitution, this is∫
u − 1

u
du

=
∫

1 − 1
u

du

= u − ln |u| + c

= e2x − ln
∣∣1 + e2x

∣∣ + c.

4459. Reflection in the line x = k is equivalent to
• reflection in x = 0 to give y = f(−x), then
• translation by 2ki, to give y = f

(
−(x − 2k)

)
,

which simplifies to y = f(2k − x).
Rotation 90° anticlockwise around O is

• reflection in x = 0 to give y = f
(
2k − (−x)

)
,

which simplifies to y = f(2k + x), then
• reflection in y = x, to give x = f(2k + y).
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4460. The average speed over the first k seconds is

v̄ = 1
k

∫ k

0
at2 + b dt

≡ 1
k

[
1
3 at3 + bt

]k

0

≡ 1
3 ak3 + b.

Setting this equal to the instantaneous speed,

aT 2
0 + b = 1

3 ak3 + b

=⇒ T 2
0 = 1

3 k3.

T0 is independent of a and b, as required.

4461. Consider the indefinite integral

I =
∫ √

x ln x dx.

We integrate by parts. Let u = ln x and v′ =
√

x,
so that u′ = 1

x and v = 2
3 x

3
2 . This gives (leaving

aside the constant of integration)

I = 2
3 x

3
2 ln x −

∫
2
3 x

1
2 dx

= 2
3 x

3
2 ln x − 4

9 x
3
2 .

We can’t evaluate I at the lower limit x = 0,
because ln x is undefined. However, as x → 0,
x

3
2 ln x → 0, as can be verified by checking small

values. So, the lower limit produces 0, and the
equation in question is therefore

2
3 k

3
2 ln k − 4

9 k
3
2 = 0

=⇒ k
3
2
(
ln k − 2

3
)

= 0

=⇒ k = 0, e
2
3 .

4462. Rewriting the sum,

n∑
r=1

(2r − 1)2 ≡
2n∑

r=1
r2 −

n∑
r=1

(2r)2

≡
2n∑

r=1
r2 − 4

n∑
r=1

r2.

Using the given result, this is

1
6 (2n)(2n + 1)(4n + 1) − 4

( 1
6 n(n + 1)(2n + 1)

)
≡ 1

3 n(2n + 1)
(
(4n + 1) − 2(n + 1)

)
≡ 1

3 n
(
2n + 1)(2n − 1), as required.

4463. Assume, for a contradiction, that x = p/q, where
p, q ∈ Z, and 2x+1 − 3x−1 = 0. This gives

2
p
q +1 = 3

p
q −1

=⇒ 2
p+q

q = 3
p−q

q

=⇒ 2p+q = 3p−q.

Since 2 and 3 are coprime and p, q ∈ Z, this can
only hold if both sides are equal to 1. Hence
p + q = 0 and p − q = 0, which gives p = q = 0.
The contradicts the fact that x = p/q is a root
of the original equation. Hence, if x is a root of
2x+1 − 3x−1 = 0, then x /∈ Q.

4464. (a) The polynomial f(x)−g(x) has degree at most
2k. This is even, so n ∈ {0, 1, ..., 2k}.

(b) The polynomial f(x)−g(x) has degree at most
2k + 1. The boundary case is odd, suggesting
n ∈ {1, ..., 2k + 1}. But it is not guaranteed
that f(x)−g(x) has degree 2k+1. For example
f(x) = x3 + 1 and g(x) = x3 + 2. So, zero is
also possible: n ∈ {0, 1, ..., 2k + 1}.

(c) The polynomial f(x)−g(x) has degree 2k, with
certainty. This is even, so n ∈ {0, 1, ..., 2k}.

(d) Again with certainty, f(x) − g(x) has degree
2k + 1. This is odd, so n ∈ {1, ..., 2k + 1}.

4465. Labelling various points, the scenario is

A CB

E

D

Triangles AEC and BDC are similar, in the ratio
81 : 25. Also |ED| = 1

25 + 1
81 = 106

2025 . So,
25
81 |CE| = |CE| − 106

2025

=⇒ |CE| = 53
700 .

This gives |CD| = 53
700 − 106

2025 = 53
2268 , and also

|AC| =
√

|CE|2 − |AE|2

= 9
140 .

Putting these facts together,

|AB| = |ED| × |AC|
|CE|

= 106
2025 ×

9
140
53

700

= 2
45 , as required.

4466. The individual periods are

sin x 2π

cos x 2π

tan x π

sin 4x π
2

cos 5x 2π
5

tan 6x π
6

The period of f is the lowest common multiple of
the individual periods. Since 2 and 5 are coprime,
this is 2π.
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4467. Differentiating implicitly, using the product rule,

d

dx
(xy) = y + x

dy

dx

=⇒ d2

dx2 (xy) = dy

dx
+ dy

dx
+ x

d2y

dx2

≡ 2 dy

dx
+ x

d2y

dx2

=⇒ d3

dx3 (xy) = 2 d2y

dx2 + d2y

dx2 + x
d3y

dx2

≡ 3 d2y

dx2 + x
d3y

dx2 , as required.

4468. Renaming one of the indexing variables, a number
appears in both sequences iff

3 × 2m−1 = 4 × 3n−2.

Consider the prime factorisations of the lhs and
rhs. The lhs has exactly one factor of three, so
the rhs must do too, giving n = 2. The rhs has
exactly two factors of two, so the lhs must do too,
giving m = 3. Therefore, the number 12 appears
in both sequences, but no other numbers do.

4469. (a) As in the identity cos x ≡ sin
(

π
2 − x

)
, the sin

and cos functions are symmetrical around the
input π

4 . So, x = π
4 must be either a minimum

or maximum. Since sin x + cos x is maximised
(rather than minimised) at this value, f(x) has
a local maximum at x = π

4 .
(b) Evaluating the function,

f
(

π
4

)
= 4.056... > 4.

At its minimum,

f
( 5π

4
)

= 1 < 4.

So, there must be (at least) two roots of
f(x) − 4 = 0 for x ∈ [0, 2π). And, since sin x

and cos x are both periodic with period 2π,
copies of these same two roots must appear in
each domain of the form

[2nπ, 2(n + 1)π).

Hence, f(x) − 4 = 0 has infinitely many roots,
as required.

4470. (a) Subbing the parametrics into the lhs,

x
2
3 + y

2
3

= (a cos3 t) 2
3 + (a sin3 t) 2

3

≡ a
2
3 (cos2 t + sin2 t)

≡ a
2
3 , as required.

(b) Differentiating,

dx

dt
= −3 cos2 t sin t.

So, in the positive quadrant, the area is∫ t2

t1

y
dx

dt
dt

=
∫ 0

π
2

a sin3 t · −3 cos2 t sin t dt

= 3a

∫ π
2

0
sin4 t cos2 t dt.

Using the integration facility on a calculator,
this is 0.098175...a2. Taking out a factor of π

gives 3
32 πa2. So, the total area enclosed by the

astroid is 3
8 πa2.

4471. (a) Differentiating with ε = 0,

y = 3x4 − 12x3 = 3x3(x − 4)

=⇒ dy

dx
= 12x3 − 36x2 ≡ 12x2(x − 3)

=⇒ d2y

dx2 ≡ 36x2 − 72x = 36x(x − 2).

The first derivative is zero at the origin, so
the origin is a stationary point. The second
derivative has a single root at x = 0, so it is
zero and changes sign. Therefore, the origin is
a stationary point of inflection.

(b) The curve is a positive quartic with a triple
root at x = 0 and a single root at x = 4. It
has another stationary point at x = 3.

x

y

(c) Let ε > 0. For small x, the quartic term can
be neglected in favour of the cubic and linear
terms. This gives, in the vicinity of the origin,
y = −12x3 + εx. Setting this to zero,

−12x3 + εx = 0

=⇒ x = 0, ±
√

ε
12 .

This gives three roots in the vicinity of and
approximately symmetrical around the origin.
The root around x = 4 remains, since, in that
region, εx is negligible compared to the quartic
and cubic terms.

x

y
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4472. There are 16! outcomes. For successful outcomes,
1 and 2 form a rectangle.

Horizontally, there are 4 × 3 = 12 locations for the
rectangle. There are also 12 vertically, giving 24
overall. For each of these, 1 and 2 can be placed
in 2! ways, and the remaining 14 numbers in 14!
ways. So,

p = 24 · 2! · 14!
16! = 1

5 .

Alternative Method

Choosing a spot for 1, there are three cases:
1 With probability 1

4 , 1 is in the middle. The
probability that 2 is placed alongside is 4

15 .
2 With probability 1

2 , 1 is on an edge, but not
in a corner. The probability that 2 is placed
alongside is 3

15 .
3 With probability 1

4 , 1 is in a corner. The
probability that 2 is placed alongside is 2

15 .
So, the probability is

p = 1
4 × 4

15 + 1
2 × 3

15 + 1
4 × 2

15 = 1
5 .

4473. We need to integrate by parts twice, so we use the
tabular integration method. The relevant table is

Signs Derivatives Integrals
+ x2 sin x

− 2x − cos x

+ 2 − sin x

− 0 cos x.

The indefinite integral is∫
x2 sin x dx

= −x2 cos x + 2x sin x + 2 cos x + c

≡
(
2 − x2)

cos x + 2x sin x + c.

So, the definite integral is∫ π
2

0
x2 sin x dx

=
[(

2 − x2)
cos x + 2x sin x

] π
2

0

= π − 2, as required.

4474. (a) Applying the function twice,

f2 : x 7−→ k − x 7−→ k − (k − x).

Since k−(k−x) ≡ x, we know that f2 : x 7→ x.
Hence, f is self-inverse, as required.

(b) If f is a polynomial of degree n, then f2 (the
composition of f with itself) has degree n2. For
a function to be self-inverse, it is necessary that
f2 : x 7−→ x. This has degree 1. So, f can only
be self-inverse if n2 = 1. Hence, no polynomial
function of degree 2 or greater is self-inverse.

4475. (a) The factor e−kt tends to zero, and dominates
(t + 1

k ). Hence, v → V . So, the constant V is
terminal velocity.

(b) Differentiating with respect to t,

a = −Ake−kt
(
t + 1

k

)
+ Ae−kt

≡ −Akte−kt.

At t = 0, the predicted acceleration is a = 0.
(c) On the velocity-time graph, the initial gradient

is zero. The velocity then decreases, tending
asymptotically to V .

t

v

V

(d) Differentiating the acceleration,

da

dt
= −Ake−kt + Ak2te−kt.

Setting this to zero,

Ae−kt(−k + k2t) = 0
=⇒ t = 1

k .

So, the maximum deceleration occurs at t = 1
k ,

and has magnitude |a| = Ae−1.

4476. Put into harmonic form, the rhs is 2 sin
(
x − π

6
)
.

Over the domain [0, 2π], the relevant values (roots,
maximum and minimum) are as follows:

x π
6

2π
3

7π
6

5π
3√

y 0 2 0 −2.

The negative value −2 cannot equal the output of√
y. So, the last of these does not produce a point

on the original graph. The first three correspond
to the sps required. Squaring √

y, the sps of the
original graph are

x π
6

2π
3

7π
6

y 0 4 0
Type Min Max Min
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Alternative Method

Put into harmonic form, the rhs is 2 sin
(
x − π

6
)
.

Squaring the equation (noting the introduction of
new points),

y = 4 sin2 (
x − π

6
)

=⇒ dy

dx
= 8 sin

(
x − π

6
)

cos
(
x − π

6
)

≡ 4 sin
(
2x − π

3
)
.

Setting the first derivative to zero for sps,

4 sin(2x − π
3 ) = 0

=⇒ 2x − π
3 = 0, π, 2π, 3π, ...

=⇒ 2x = π
3 , 4π

3 , 7π
3 , 10π

3 , ...

=⇒ x = π
6 , 2π

3 , 7π
6 , 5π

3 , ...

The first three of these x values produce values of
y. The last doesn’t. This gives three sps:

x π
6

2π
3

7π
6

y 0 4 0
Type Min Max Min.

4477. The implication goes backwards. If f(x)−g(x) has
a factor of (x − a)2, then f(x) − g(x) has a double
root at x = a. Hence, f(x) − g(x) is stationary at
x = a, meaning that f ′(a) = g′(a).
But the converse is not true. A counterexample is
f(x) = x2 and g(x) = x − 1, with a = 0. We have
f ′(0) = g′(0) = 0, but f(x) − g(x) = x2 − x + 1,
which does not have a factor of x2.

4478. (a) Testing the input −x,

A(−x) = f(−x) + f(x)
≡ f(x) + f(−x)
= A(x).

So, A is even. Also

B(−x) = f(−x) − f(x)
≡ −(f(x) − f(−x))
= − B(x).

So, B is odd.
(b) Taking the mean of the functions A and B,

1
2 A(x) + 1

2 B(x) = f(x).

This is a decomposition of f(x) into an even
and an odd function, which proves the result
by construction.

4479. By definition, sec θ = 1
cos θ . Using a small-angle

approximation for cos θ,

sec θ ≈
(
1 − 1

2 θ2)−1
.

We use the generalised binomial expansion. Since
θ is small, we can neglect terms in θ4 and above.
This gives sec θ as approximately equal to

1 + (−1)
(
− 1

2 θ2)
≡ 1 + 1

2 θ2

≡ 2 −
(
1 − 1

2 θ2)
≈ 2 − cos θ

= 2 −
√

1 − sin2 θ

≈ 2 −
√

1 − θ2, as required.

Alternative Method

Expanding the rhs binomially, again neglecting
terms in θ4 and above,

2 −
(
1 − θ2) 1

2

= 2 −
(
1 + 1

2
(
−θ2)

+ ...
)

≡ 2 −
(
1 − 1

2 θ2 + ...
)

≡ 1 + 1
2 θ2 + ...

This agrees with the expansion of sec θ given in the
first solution.

4480. (a) The second equation is y = x
2
3 . This gives

xex = x
2
3

=⇒ x = 0 or ex = x− 1
3 .

Raising the latter to the power −3, e−3x = x.
Since α is non-zero, this gives α = e−3α. So,
α is a fixed point of xn+1 = e−3xn .

(b) The N-R iteration for x − e−3x = 0 is

xn+1 = xn − xn − e−3xn

1 + 3e−3xn
.

Running this with x0 = 0.5, x1 = 0.3341...,
then xn → 0.3499.... So, α = 0.350 (3sf).

(c) In a fixed-point iteration xn+1 = g(xn), the
condition for convergence is | g′(α)| < 1. For
the iteration in (a), g′(x) = −3e−3x. At the
fixed point, g′(α) = −1.0499.... This is less
than −1, so the iteration diverges. However,
since it is only just less than −1, the iteration
diverges very slowly.

Nota Bene

Consider the inverse iteration

xn+1 = ln
(
x− 1

3
)
.

Its gradient g′(α) is the reciprocal of that of
the iteration in (a), i.e. 1/−1.05 ≈ −0.95. So,
while one diverges, but very slowly, the other
converges, but very slowly. This is one of the
reasons why the N-R iteration is so much more
reliable than fixed-point iteration.



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

4481. For x intercepts, x(e2x + k) = 0, so x = 0 or
x = 1

2 ln(−k). For sps,

(e2x + k) + 2xe2x = 0.

Substituting x = 0 gives 1 + k = 0, so k = −1.
Alternatively, substituting x = 1

2 ln(−k),

−k ln(−k) = 0
=⇒ k = 0, −1.

The value k = 0 does not give a stationary point
on the x axis, as ln 0 is undefined. So, k = −1.

4482. (a) The solution set of g(x) h(x) ≥ 0 is P ∩ Q,
which does not contain P ′ ∩ Q.

(b) The solution set is (P ∩ Q′) ∪ (P ′ ∩ Q), which
does contain P ′ ∩ Q.

(c) The exact solution set of g(x)+h(x) > 0 can’t
be determined from the information given.
However, for any element x ∈ P ∩ Q, g(x) ≥ 0
and h(x) ≥ 0, so g(x) + h(x) ≥ 0. Therefore,
the solution set does include P ∩ Q.

4483. A counterexample is f(x) = x4 +x, with p = 1 and
q = −1. The second derivative is f ′′(x) = 12x2.
So, f ′′(1) = 12 and f ′′(−1) = 12. But the curve
doesn’t have the y axis as a line of symmetry:

x

y

4484. Equation A factorises as (z − 1)(x + y) = 0, which
is satisfied if z = 1 or x + y = 0.
Equation B holds if z = 1 or x + y = 1.
If we suppose that z ̸= 1 then equation A requires
x + y = 0 and equation B requires x + y = 1. It is
not possible for both of these to hold. Hence, there
are no simultaneous solutions for which z ̸= 1.
This proves the result.

4485. (a) Let u = ln x and v′ = 1, so that u′ = 1
x and

v = x. The parts formula gives∫
ln x dx = x ln x −

∫
1 dx

= x ln x − x + c.

(b) Using the change of base formula,

log2 x = ln x

ln 2 .

This gives∫
log2 x dx

= 1
ln 2

∫
ln x dx

= x
ln x

ln 2 − x

ln 2 + c

≡ x log2 x − x

ln 2 + c, as required.

4486. From the graph, the range is (−∞, 0) ∪ [k, ∞),
where k is the y value of the local minimum. For
sps, we set the derivative to zero:

ex(x + 2) − ex

(x + 2)2 = 0

=⇒ ex(x + 2) − ex = 0
=⇒ x = −1.

This gives k = 1/e. So, the range of the function is
(−∞, 0) ∪ [1/e, ∞).

4487. (a) This is false. A counterexample is g(x) = x

and f(x) = x2 + 1. The line y = x has an x

intercept, but y = fg(x) = x2 + 1 has none.
(b) This is true. Differentiating by the chain rule,

dy

dx
= f ′(g(x)) g′(x).

Wherever g′(x) is zero, f ′(g(x)) g′(x) is also
zero, giving a stationary point of y = fg(x).

(c) This is false. A counterexample is g(x) = x3

and f(x) = x2. The cubic y = g(x) = x3

has a point of inflection at the origin, but
y = fg(x) = x6 doesn’t. Its second derivative
is zero, but doesn’t change sign.

4488. Integrating by inspection,∫ k

0
2xex2

+ 1 dx = e

=⇒
[
ex2

+ x
]k

0
= e

=⇒ ek2
+ k − 1 = e

=⇒ ek2
− e + k − 1 = 0.

This is not analytically solvable. The Newton-
Raphson iteration is

kn+1 = kn − ek2
n − e + kn − 1
2knek2

n + 1
.

Running this with k0 = 0, we get k1 = e, then
kn → 1. We can verify that this satisfies the
equation exactly. And, since the area function
A(x) = ex2 + x is increasing everywhere, this is
the only possible value of k.
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4489. Consider the lines 3x − y = 0 and x + y = 0. At
any points not on these lines, the algebra is linear.
So, the locus is formed of line segments. Setting
3x − y = 0 gives (1/2, −1/2) and (−1/2, 1/2). Setting
x + y = 0 gives (1/2, 3/2) and (−1/2, −3/2). These
are the vertices of a parallelogram:

x

y

4490. Consider the graph y = f(x).

Since f−1(y) = x, we can rewrite the result as∫ b

a

y dx +
∫ d

c

x dy = bd − ac.

Consider this graphically:

x

y

(a, c)

(b, d)

The solid shading gives the first integral; the
hatched shading gives the second integral. The
sum of the two is the total shaded area, which may
be calculated as the area bd of the larger rectangle
(with a vertex at the origin) minus the area ac of
the smaller rectangle.

4491. The only way the triangles don’t overlap is if, taken
in order around the circumference, A, B, C and
D, E, F form distinct groups. The exact positions
of the points aren’t relevant, only their order is.

Consider the possibility space as an alphabetical
list of 6! orders of the points. For successful orders,
there are 6 possible locations for the {A, B, C}
group. Once this is chosen, there are 3! orders of
the {A, B, C} group and 3! orders of the {D, E, F}
group. So, the probability is

p = 6 × 3! × 3!
6! = 3

10 .

4492. Let z = f(x) and y = g(x). The first derivative of
f(x) with respect to g(x) is

dz

dy
=

dz
dx
dy
dx

= f ′(x)
g′(x) .

Call the above u. The second derivative is

du

dy
=

du
dx
dy
dx

.

By the quotient rule, the numerator is

du

dx
= f ′′(x) g′(x) − f ′(x) g′′(x)

(g′(x))2 .

Dividing this by dy
dx = g′(x), the second derivative

of f(x) with respect to g(x) is

f ′′(x) g′(x) − f ′(x) g′′(x)
(g′(x))3 , as required.

4493. The force diagram is as follows:

mg

T

θ

Let x be the arc length/position, taken positively
from the equilibrium position. With θ in radians,
x = lθ. Differentiating twice with respect to t,

d2x

dt2 = l
d2θ

dt2 .

Resolving in the tangential direction,

−mg sin θ = m
d2x

dt2 = ml
d2θ

dt2

=⇒ d2θ

dt2 + g

l
sin θ = 0.

For small angles θ in radians, we can approximate
sin θ ≈ θ. This gives

d2θ

dt2 + g

l
θ ≈ 0.

Nota Bene

The de above is the equation for simple harmonic
motion. Its solution curves are sinusoids. Hence,
for small oscillations around vertical, a pendulum
swings in an approximation (arbitrarily good in
the small-angle limit) to sinusoidal motion.
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4494. We maximise y ≥ 0 when we maximise y2. This is
quadratic in x− 4

5 . Completing the square, it is

y2 = −x− 8
5 + x− 4

5

≡ −
(
x− 4

5 − 1
2
)2 + 1

4 .

So, the maximum value of y2 is 1/4, and therefore
the maximum value of y is 1/2.

4495. There are three possibilities: Y1 > Y2 or Y1 < Y2
or Y1 = Y2. The first two are symmetrical. So, we
calculate the third. The probability distribution
of B(5, 1/2) is

y 0 1 2 3 4 5
P(Y = y) 1

32
5

32
10
32

10
32

5
32

1
32

P(Y1 = Y2) is given by the sum of the squared
probabilities, which is

2
(

1
32

2 + 5
32

2 + 10
32

2
)

= 63
256 .

Subtracting this from 1 gives the probability that
Y1 and Y2 differ. Halving this gives

P(Y1 > Y2) = 1
2
(
1 − 63

256
)

= 193
512 , as required.

4496. If the slopes were smooth, then the 4m mass would
accelerate downwards. Firstly, consider limiting
equilibrium. In this case, both frictional forces are
maximal, because any motion would require both
blocks to move.
The force diagrams are

R1 T + F1

4mg

R2T

F2
mg

The reactions are R1 = 2
√

2mg and R2 =
√

2
2 mg.

So, the maximal frictional forces are 2
√

2µmg and√
2µmg respectively. In the direction of the string,

the total component of weight is

4mg ·
√

2
2 − mg ·

√
2

2 = 3
√

2
2 mg.

The total frictional force is
√

2µmg + 2
√

2µmg = 3
√

2µmg.

Equating these,

3
√

2
2 mg = 3

√
2µmg

=⇒ µ = 1
2 .

The system is in equilibrium, so µ ∈ [1/2, ∞).

4497. Let θ be the angle of inclination of y = mx, so that
tan θ = m. The angle of inclination of y =

√
8x

is therefore 2θ. This gives
√

8 = tan 2θ. Using a
double-angle formula,

√
8 = 2 tan θ

1 − tan2 θ

= 2m

1 − m2 .

This is a quadratic in m:
√

8
(
1 − m2)

= 2m

=⇒ m = −
√

2,
√

2
2 .

We reject the former, as the line is in the first
quadrant. So, m =

√
2/2.

4498. The problem gives the values p, q and the values
up, uq. Using the ordinal formula of a gp, we have
(in the problem) two equations:

up = arp−1,

uq = arq−1.

Dividing one by the other gives

rp−q = up

uq
.

The only way this can generate multiple solutions
(thus leaving uncertainty in un) is if p − q is even.
Hence, the relationship between p and q is that
they must have the same parity, i.e. both must be
even or both be odd.

4499. Squaring the variable equations,

s2 = x2 + 2xy + y2,

t2 = x2 − 2xy + y2.

Adding and subtracting these,

2x2 + 2y2 = s2 + t2,

−xy = 1
4
(
t2 − s2)

.

So, the original equation is

s2 + t2 + 1
4
(
t2 − s2)

= 1
=⇒ 3s2 + 5t2 = 4.

This is the equation of an ellipse in the (s, t) plane.
The value of s is constant along y = −x and the
value of t is constant along y = x, so the s and t

axes are angled at 45° to the x and y axes:

x

y

t

s



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

4500. The construction is as follows:

x

y

A B

CD

The construction produces a trapezium with edge
lengths, not in order, {1, 2, 3, 4}.

End of 45th Hundred


